Upregulation of fractalkine contributes to the proliferative response of prostate cancer cells to hypoxia via promoting the G1/S phase transition

نویسندگان

  • JIEBING TANG
  • YUANYUAN CHEN
  • RONGJUN CUI
  • DONG LI
  • LIJIE XIAO
  • PING LIN
  • YANDAN DU
  • HUI SUN
  • XIAOGUANG YU
  • XIULAN ZHENG
چکیده

Hypoxia is a common phenomenon in prostate cancer, which leads to cell proliferation and tumor growth. Fractalkine (FKN) is a membrane‑bound chemokine, which is implicated in the progression of human prostate cancer and skeletal metastasis. However, the association between FKN and hypoxia‑induced prostate cancer cell proliferation remains to be elucidated. The present study demonstrated that hypoxia induced the expression and secretion of FKN in the DU145 prostate cancer cell line. Furthermore, inhibiting the activity of FKN with the anti‑FKN FKN‑specific antibody markedly inhibited hypoxia‑induced DU145 cell proliferation. Under normoxic conditions, DU145 cell proliferation markedly increased following exogenous administration of human recombinant FKN protein, and the increase was significantly alleviated by anti‑FKN, indicating the importance of FKN in DU145 cell proliferation. In addition, subsequent determination of cell cycle distribution and expression levels of two core cell cycle regulators, cyclin E and cyclin‑dependent kinase (CDK)2, suggested that FKN promoted the G1/S phase transition by upregulating the expression levels of cyclin E and CDK2. The results of the present study demonstrated that hypoxia led to the upregulation of the secretion and expression of FKN, which enhanced cell proliferation by promoting cell cycle progression in the prostate cancer cells. These findings provide evidence of a novel function for FKN, and suggest that FKN may serve as a potential target for treating androgen‑independent prostate cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

G1 Phase Arrest and Apoptosis Induction in Human Thyroid Cancer Cell Line Thr.C1.PI33 by 3-Hydrogenkwadaphnin Isolated from Dendrostellera lessertii

Dendrostellera lessertii (Thymelaeaceae) is a toxic plant that grows in parts of Iran. The anti-proliferative properties of its crude methanol extract and one of its active components, 3-hydrogenkwadaphnin (3-HK), have been established using several cancer cell lines. Methods: In a further attempt to determine the mode of action, two groups of synchronously growing cells were treated with a sin...

متن کامل

Intermittent hypoxia reduces microglia proliferation and induces DNA damage in vitro

Objective(s):Intermittent hypoxia (IH), caused by obstructive sleep apnea (OSA), could cause hippocampus or neuron damage through multiple signaling pathways, while the underlying mechanisms are still unclear. Thus, the present study aimed to explore the effect of IH on the biological functions of microglia cells. Materials and Methods:Cell proliferation of BV2 cells after exposure to IH were o...

متن کامل

Analysis of epithelial mesenchymal transition markers in breast cancer cells in response to stromal cell-derived factor 1

Introduction: Metastasis is the main cause of cancer death; however, the underlying mechanisms of metastasis are largely unknown. The chemokine of stromal cell-derived factor 1 (SDF1) and the process of epithelial mesenchymal transition (EMT), both have been declared as important factors to promote cancer metastasis; however, Conspicuously, the relation between them has not been recognized well...

متن کامل

Hypoxia increases CX3CR1 expression via HIF-1 and NF‑κB in androgen-independent prostate cancer cells.

The unique CX3C chemokine CX3CL1 and its cognate receptor CX3CR1 have been implicated in organ-specific metastasis of various types of tumors. Hypoxia, a common phenomenon in solid tumors, is associated with a malignant cancer phenotype. Previous studies have proved that hypoxia facilitates cancer cell metastasis through upregulation of specific c...

متن کامل

A mathematical model of HiF-1α-mediated response to hypoxia on the G1/S transition.

Hypoxia is known to influence the cell cycle by increasing the G1 phase duration or by inducing a quiescent state (arrest of cell proliferation). This entry into quiescence is a mean for the cell to escape from hypoxia-induced apoptosis. It is suggested that some cancer cells have gain the advantage over normal cells to easily enter into quiescence when environmental conditions, such as oxygen ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2015